
A Multicast-based Bootstrap Mechanism for
Self-organizing P2P Networks

Simone Cirani and Luca Veltri
Department of Information Engineering

University of Parma
Viale G. P. Usberti 181/A, 43100 Parma - Italy

Email: simone.cirani@tlc.unipr.it, luca.veltri@unipr.it

Abstract—The peer-to-peer (P2P) network paradigm has been
introduced in order to overcome some shortcomings of the client-
server architecture by providing such features as decentraliza-
tion, self-organization, scalability, and fault-tolerance. Bootstrap-
ping is the initial process through which new nodes can join
an existing P2P overlay network. Typically, a joining peer must
first contact a bootstrap peer, which is a peer already enrolled
in the overlay. The bootstrap peer is responsible for admitting
the new peer by passing information about other peers so that
the new peer can actively participate in the overlay. Finding a
suitable bootstrap peer is therefore a critical issue. Although
different P2P systems have been defined and deployed, the
problem of bootstrapping has usually been solved by introducing
such mechanisms as the use of a pre-configured list of nodes,
caching, or server-based discovery. Unfortunately, although they
work in P2P applications running over the Internet, they show
some problems when applied to very dynamic and self-organizing
intranet or enterprise network scenarios. In fact, in these cases all
nodes may join and leave the network very dynamically, without
the possibility of guaranteeing any sort of permanent centralized
service as current bootstrap solutions may require. In this paper,
we propose a multicast-based bootstrapping mechanism for
dynamic and self-organized P2P networks that allows a joining
peer to discover a proper bootstrap peer in a real distributed
manner. The proposed mechanism uses an unsolicited approach
and performs well in terms of scalability, load-balancing, and
a mean frequency of information exchange. The paper defines
the algorithm and proposes an implementation of a suitable
communication protocol.

I. INTRODUCTION

Peer-to-peer (P2P) overlay networks are used in those
scenarios where decentralization, self-organization, and fault-
tolerance are desired. However, P2P systems are never fully
distributed as they typically rely on some centralized network
elements or prior knowledge for bootstrapping, that is, to let
new nodes join the overlay. Therefore, actual decentralization
and self-organization cannot be achieved. Although this is
not a problem in current P2P applications over the Internet
where some (super-)nodes can be considered as permanently
connected and sufficiently reliable, this becomes a problem
when applied to very dynamic and self-organizing intranet or
enterprise networks where all nodes may have a very dynamic
behavior, leading to the impossibility to guarantee any sort of
reliable and centralize bootstrap service.

Generally, a peer which is willing to join any P2P network
needs to discover the location of a bootstrap peer to send its
join request to. Current solutions include the use of:

• cached mechanisms - a peer maintains a list of previously
discovered peers and tries to contact them; this approach
does not solve however the problem when the peer is
trying to join the overlay for the first time as its cached
list would be empty;

• server-based mechanisms - a peer contacts a pre-
configured server node (or list of nodes); this approach
has the obvious disadvantage of being server-centric,
which is an antithetical solution for the goal of a purely
distributed network and would create a bottleneck in the
network and a possible point of failure; it is important to
say that the failure of the bootstrap server does not affect
the behavior of the P2P overlay, but only prevents new
peers from joining the network;

• multicast-based mechanisms - multicast support is ex-
ploited as proposed in this paper.

The first two approaches have drawbacks. For instance, it
might not always be possible to know in advance a list of nodes
that are always active to be used for bootstrapping, caching
does not work in case the new node is joining the overlay for
the very first time or if cached nodes are no longer enrolled in
the overlay, and server-based mechanism might be useless if
the server is unreachable. The use of mechanisms that combine
pre-configured lists which are hardcoded into the protocol and
caching has proved to work in practice (i.e. eMule bootstrap-
ping), but it is still potentially exposed to the risk of failure.
Moreover, such mechanisms do not work in all those scenarios
in which the P2P networks are built in a complete distributed
and self-organized manner (for example in case of server-
free distributed enterprise networks or ad-hoc networks). This
paper describes a new mechanism for discovering a bootstrap
node in a P2P network. The mechanism, named BANANAS
(BootstrAp Node NotificAtion Service), is based on multicast
communications, and provides a completely distributed, self-
organizing and scalable discovery service. Although the use
of IPv4 multicast is currently not supported amongst the
public Internet, it is implemented in several ISPs, private,
or enterprise networks and it is expected in the future to be
supported within more and more IPv4 and IPv6 networks.

The paper is organized as follows: in section II related work
is reviewed. In section III, the solicited and unsolicited service
approaches are discussed. In section IV we present a simple

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2009 proceedings.
978-1-4244-4148-8/09/$25.00 ©2009

algorithm for the bootstrap service and explain some of its
inefficiencies. In section V, an enhanced version of the algo-
rithm is presented in order to overcome the limitations of the
simple algorithm shown in section IV. Section VI proposes a
simple implementation that we have realized through a suitable
protocol. Finally, in section VII we report our conclusions.

II. RELATED WORK

Cramer et al. [1] have discussed some possible mechanisms
for the bootstrapping process, such as based on: static boot-
strap servers, dynamic web caches, random access probing,
multicast, or IPv6 anycast. The first two mechanisms suffer
of the well known centralization, low reliability, and non-
self-organization problems; while the random access probing,
that consists in trying several random entry points until a
success is reached, may result in large number of failures and
large amount of network traffic. Anycast is also considered as
mechanism for acquiring an IP address of a potential bootstrap
peer, however it is also pointed out that such mechanism just
moves the problem of node selection at the network layer, and
has as drawback that may limit the requesting nodes’ freedom
of choice. The authors also considered multicasting as possible
mechanism combined with the expanding ring search (ERS).
ERS in turn works by searching successively larger areas in
the network centred around the source of broadcast. Searching
areas may be limited by using increasing values of TTL (Time
To Live). However this approach has some limitations such as:

• TTL scoping requires “successive containment” property
and will not work with overlapping regions;

• by increasing the TTL, the multicast scope may rapidly
expand to a large portion of the entire network resulting in
flooding query packets to a very large number of nodes;

• for each TTL value, a proper maximum round-trip time
(RTT) has to be considered (measured or pre-configured).

The authors in [2] propose a bootstrap service based on
random access probing. The bootstrap service relies on a
separate, dedicated, and unique P2P bootstrap overlay where
bootstrapping information are stored. The bootstrap overlay is
used in order to exploit random access probing, which proved
to be more efficient in large P2P networks, and can be accessed
through two basic methods (lookup() and publish()). The
bootstrap overlay is based on a Distributed Hash Table (DHT)
to achieve load balancing among the participating nodes.
However, the bootstrap service still suffers some drawbacks:

• it simply shifts the problem of joining the P2P overlay
network to that of joining the P2P bootstrap overlay;

• it is based on DHTs, which may suffer of some security
issues, such as poisoning or Sybil attacks;

• it relies on a PULL approach, that is, joining nodes
issue a request and receive a response with bootstrapping
information; even though a load balancing effort has been
made in order to avoid overloading nodes responsible for
the key of a popular overlay, each node possibly needs
to handle an unpredictable number of requests.

Because of these reasons, we propose a different mechanism
which is PUSH-based, that is, the joining node does not

issue any request and bootstrap information are notified by
the service. Moreover, our approach does not require any
information storage system such as DHTs in order to keep
bootstrapping information since each node simply notifies its
own presence, thus avoiding the risk of overloading nodes.

III. SOLICITED VS. UNSOLICITED APPROACH

In this section, we will briefly discuss about the implication
of the usage of the PUSH and PULL approaches in a multicast-
based service. Let us consider the case in which all peers
that act as bootstrap nodes or that directly know one or more
bootstrap nodes are enrolled in a multicast group. There are
two possible approaches for the discovery of a bootstrap peer
in a multicast fashion.

A. Solicited approach

A peer which tries to join the overlay sends one multicast
request to all the nodes in the group asking for bootstrap
nodes; the nodes that would respond to such request would
all be candidates to admit the peer. However, such a solicited
mechanism would cause an overload of the network, especially
when many bootstrap nodes are already in the overlay because
all notification responses are sent for each joining node. Note
that, amongst all response messages, only one is used by the
requesting peer since only one bootstrap peer is needed to
join the overlay. Moreover, also limiting the total number of
responses from bootstrap nodes does not limit the total amount
of messages spread over the network since it strictly depends
on the total joining rate, multiplied for the cardinality of the
multicast group.

B. Unsolicited approach

All the bootstrap nodes in the multicast group send unso-
licited messages to all nodes in the group to advertise their
presence in the overlay as well as their bootstrap information.
When a node needs to discover a bootstrap node, it simply
joins the multicast group and listens for these messages. This
approach potentially may still have scalability issues due to
the large number of messages sent over the network. However
in this case, differently from the previous approach, such total
amount of sent messages may be limited, regardless of the
actual joining rate. This can be achieved if the nodes cooperate
in order to ensure that the total amount of messages sent over
the multicast group is constant or upper bounded, regardless
of the effective number of collaborating bootstrap nodes. This
second approach is the one followed in this work and appears
to be the most efficient for the reasons reported above.

IV. SIMPLE ALGORITHM

The goals of the service are to provide a service character-
ized by an almost constant rate of messages received and to
fairly balance the number of messages sent by nodes. Both
bootstrap and joining nodes join the same multicast group.
Each node sees a timeline divided into slots of length T , where
f = 1

T is the average rate at which a message is to be received
by any node in the group. A simple algorithm, which will be
described next, can be used in order to achieve these goals.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2009 proceedings.
978-1-4244-4148-8/09/$25.00 ©2009

A. Synchronized case

Suppose all nodes are synchronized, that is, their time slots
are perfectly aligned. At the beginning of the slot, each node
computes a random time ti, uniformly distributed in the [0, T]
interval. When time ti is reached, the node decides whether
to actually send the message or not, depending on the fact
that a message has already been received between time 0 and
time ti. If no message was received, then the node sends its
message, otherwise it waits for the next slot, and repeats the
above procedure. In a given time slot, the message will be sent
by the node which computed the shortest time tmin, and all
other nodes will cancel their scheduled message.

Let t1, t2, ..., tn be a set of n independent random
variables, uniformly distributed in the interval [0, T].

fTi(ti) =

{
1
T if 0 ≤ ti ≤ T

0 elsewhere

Integration of fTi(ti) yields the cumulative distribution
function of the random variable ti:

FTi(ti) =

0 if ti < 0
ti
T if 0 ≤ ti ≤ T

1 if ti > T

Let tmin = min(t1, t2, ..., tn).
We wish to find the cumulative distribution function and

mean value of the random variable tmin.

{tmin ≤ t} = {tmin > t}
′
=

{
n⋂

i=1

{ti > t}
}′

Therefore

FTmin(t) =

0 if t < 0
1 −

(
1 − t

T

)n
if 0 ≤ t ≤ T

1 if t > T

Derivation of FTmin(t) yields the probability density func-
tion fTmin(t):

fTmin(t) =

{
n
T

(
1 − t

T

)n−1
if 0 ≤ t ≤ T

0 elsewhere

The mean value of the random variable tmin is:

ε = E {tmin} =
∫ +∞

−∞
fTmin(t) dt =

T

n + 1

As the number of nodes increases, the mean departure time
value generated by the elected node decreases, and it will tend
to 0 as the number of nodes tends to infinity. Therefore, a
message will be sent at the beginning of each slot and all
other messages will be dropped (not sent). The average rate
of messages sent to the group would be f = 1

T . Moreover,
since each round of computation of the random time ti is
independent from the previous ones and from the other nodes,
no assumption can be made about which node will be elected
in a given round, so the probability of a node to be elected
will be 1

n , if n nodes are participating in the group.

B. Unsynchronized case

Let’s remove the hypothesis about the synchronization of
the time slots among the nodes. In this case, we use the same
approach seen above, with one main difference: the reception
of a message is used as a synchronization event among the
nodes. To do so, instead of computing the time of the next
scheduled message every T , we compute it starting from one
slot after the time of reception or sending a message. This
approach eliminates the need for synchronization among the
nodes, but has the disadvantage that it may increase the mean
time of a message being sent in the group. The time between
two successive messages is the minimum computed time tmin

plus T . Again, let tmin = min(t1, t2, ..., tn). The mean time
between two successive messages is:

E {tmin + T} = E {tmin} + T = ε + T = T · n + 2
n + 1

However, as n increases, the average time tends to T .

C. Problems with the simple algorithm

The algorithms sketched above assume that all nodes are
able to detect immediately a received notify message and at
the same time stop the sending process scheduled for the same
timeslot. Although this is applicable in case of zero network
delay, that is, the case in which the time needed for delivering
a message is almost zero, it does not apply to real-world
networks, because of the actual physical time requirements for
a message to be delivered from end to end. At the contrary,
it is possible that a message is still sent by one node that has
computed a higher random value but that has not yet received
the message from the real winning (elected) node. We call τi

the vulnerability interval for the i-th node the time needed for
the i-th node to receive the message sent from the elected node.
Since in general such τi depends on node i, to the network
topology, and to the current network traffic, we consider a
system vulnerability interval of length τ , which is the worst-
case estimation of the delivery time of a message. Due to the
difficulty to estimate the worst-case network delivery time,
any pre-configured upper bound can be considered. We refer
to a “collision” as the event that a message is sent after the
message sent from the actual elected node. A collision occurs
any time a node that scheduled a departure time greater than by
the elected node does not receive the message sent by elected
node before its own departure time, due to network delay. We
wish to calculate the mean number of collisions for a network
consisting of n nodes. Let tmin be the minimum amongst
the values t1, t2, . . . , tn generated by the n nodes. Since the
minimum value is tmin, all the nodes that have not generated
tmin must have generated a value t > tmin. Let’s calculate
the conditioned distribution of t, given the event {t > tmin}.
Let t̄ = {t|t > tmin}.

FT̄ (t) =

0 if t < tmin
t − tmin
T − tmin

if tmin ≤ t ≤ T

1 if t > T

Derivation of FT̄ (t) yields:

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2009 proceedings.
978-1-4244-4148-8/09/$25.00 ©2009

fT̄ (t) =

{
1

T − tmin
if tmin ≤ t ≤ T

0 elsewhere

The probability that one of the n − 1 nodes that have not
generated the minimum value tmin generated a value in the
interval [tmin, tmin + τ] is:

FT̄ (tmin + τ) =

0 if tmin < 0
τ

T − tmin
if 0 ≤ tmin ≤ T − τ

1 if tmin > T − τ

We define

p(tmin) = FT̄ (tmin + τ)

The probability is function of the minimum value tmin. The
probability that k of the the n− 1 nodes generated a value in
the interval [tmin, tmin + τ] (that is, the probability to get k
collisions) is:

(
n − 1

k

)
· p(tmin)k (1 − p(tmin))n−1−k

This probability is function of n, tmin, and k. Given n and
tmin, the distribution of the probability is a discrete binomial
distribution, whose mean value is (n−1)p(tmin). We can then
state that at each round, there will be k collisions in average,
where:

E {k} =

{
(n − 1) τ

T − tmin
if 0 ≤ tmin ≤ T − τ

n − 1 if tmin > T − τ
(1)

As n increases, tmin tends to 0, and therefore the number
of collisions tends to the ratio τ

T · (n − 1).

V. ENHANCED ALGORITHM

In order to avoid the problems outlined in the previous
section, an enhanced version of the algorithm is used. The
algorithm first estimates the number of nodes that are currently
enrolled in the group, and then exploits this information to
schedule the time of sending of the message.

A. Estimation of the number of collaborating nodes

Let us suppose that, each time a node sends a notification
message, it includes also its scheduled departure time ti. The
knowledge of the minimum tmin of a set of uniformly dis-
tributed random variables and the number of random variables
k whose value belongs to the interval [tmin, tmin +τ], is used
to estimate the number of such random variables.

We can invert (1) to get the number of nodes as a function
of the minimum generated time tmin and the mean number of
collisions E {k}:

n =

{
E {k} T − tmin

τ if 0 ≤ tmin ≤ T − τ
E {k} + 1 if tmin > T − τ

If we assume that the number of messages that were
received in the interval [tmin, tmin + τ] coincides with the

mean number of k (k = E {k}), then it is possible to invert
(1) to estimate n:

n̂ =

{
kT − tmin

τ if 0 ≤ tmin ≤ T − τ
k + 1 if tmin > T − τ

Since the assumption that k = E {k} was made, the
estimation works well if k is big, and therefore if n is big.
n̂ tends to overestimate the actual value of n. We handle
the possibility of undelivered messages by considering the
probablity of a lost message ploss = Pr {message is lost}. The
number of collisions must be therefore adjusted by dividing it
by ploss.

B. Scheduling

We now want to exploit the information about the number of
nodes that are currently participating in the group to generate
a schedule in order to fairly balance the number of messages
among the nodes while respecting the goal of having a constant
rate of sent messages within the group.

Let n̂ be the estimated number of nodes. Any node in
the group randomly selects a number between 1 and n̂. The
selected number will correspond to a particular time slot self-
assigned to the node. The node will wait until its time slot
and will send its message at a randomly selected time in that
interval. The departure time within the slot is randomized in
order to let that, in case two or more nodes will select the same
slot, one node would send its message first and the other nodes
may detect such message and reschedule their message in a
successive timeslot.

We will now evaluate this scheduling mechanism. Let n be
the number of participants to the algorithm. Each participant
selects a number between 1 and n. Let’s define the event

En,k = {k different values are selected out of n} .

We wish to calculate the mean value of the k different numbers
selected by the n participants. Since the selection of the
number is independent from participant to participant, it may
happen that a number is selected by different participants. If
n is the number of participants and each participant selects
a number between 1 and n, the probability that a total of k
different numbers are selected can be written as:

Pr {En,k} = Pn,k =
Xn,k

N
(2)

where N is the total number of possible outcomes of the event:

EN = {n particpants select a number between 1 and n}

and Xn,k is the total number of outcomes of the event En,k.
EN is clearly the event of generating all the dispositions of

n elements from a set of n numbers. The number of all the
outcomes is N = nn.

If k = 1, Xn,k = n since there are n possible sets of n
values that contain exactly one value (one for each value). If

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2009 proceedings.
978-1-4244-4148-8/09/$25.00 ©2009

k ≥ 2, Xn,k can be written by the following formula:

Xn,k =
n!

(n − k)!

n−k∑

i1=0

ki1

n−k−i1∑

i2=0

(k−1)i2 · · ·

n−k−

k−2∑

j=1

ij

∑

ik−1=0

2ik−1

(3)
Let’s focus on the case k ≥ 2. If we define

In,k =

i ∈ Nk−1 : ‖i‖1 =
k−1∑

j=1

ij ≤ n − k

and the exponentiation of two vectors as

(a1, a2, . . . , an)(b1,b2,...,bn)T

=
n∏

i=1

(ai)
bi

then we can rewrite (3) as:

Xn,k =
n!

(n − k)!

∑

i∈In,k

(K)i
T

(4)

where
K = (k, k − 1, . . . , 2)

and
i = (i1, i2, . . . , ik−1) .

It is possible to find the cardinality θn,k of the set In,k by
the following formula:

θn,k =
(n − 1)!

(n − k)! · (k − 1)!
=

(
n − 1
k − 1

)
(5)

Now we can define a matrix Yn,k ∈ M (θn,k, k − 1) as:

Yn,k =

i1
i2
...

iθn,k

(6)

We can extend the definition of vector exponentiation to the
case of exponentiating a vector to a matrix. Let a be a vector
of n elements and B a matrix ∈ M (n,m). Then, the result of
exponentiating vector a to matrix B is a vector of m elements:

aB = (a1, a2, . . . , an)(b1,b2,...,bm) =
(
ab1 , ab2 . . . abm

)

where by bi we denote the i-th column of B (bi has n
elements).

Now we can write

KY T
n,k =

(
Ki1

T

,Ki2
T

, . . . ,K
iθn,k

T
)

= γn,k (7)

and finally

Γn,k =
∥∥∥γn,k

∥∥∥
1

=
θn,k∑

j=1

Kij
T

=
∑

i∈In,k

(K)i
T

(8)

Therefore we can write:

Xn,k =
n!

(n − k)!
· Γn,k (9)

which lets us find the number of different sets of n elements
that contain k different elements when those elements are
drawn from a set of n different elements. Since Γn,k is clearly
function of both n and k, our goal is to find a function
φ : N2 → N such that φ (n, k) = Γn,k. It is banal to see
that Γn,n = 1.

We can get the value of Γn,k by reducing the problem to
all the sub-problems of lower degree, in a recursive fashion.
Such a reduction leads to an iterative formulation of the value
of Γn,k:

Γn,k =
n−k∑

i=0

ki · Γn−1−i,k−1

Γn,n = 1

Γn,2 =
n−2∑

i=0

2i = 2n−1 − 1

(10)

With some calculations and index substitution it is easy to
find an alternative and computationally more efficient repre-
sentation for Γn,k. Given the above definition of Γn,k, we can
write:

Γn−1,k =
n−k−1∑

j=0

kj · Γn−2−j,k−1

Therefore it is easy to demonstrate that:

Γn,k = Γn−1,k−1 + k · Γn−1,k

Even though there is no closed form to express Γn,k, a
numerical computation shows that the mean of the number
of non-empty slots tends to be approximately k ≈ 0.6n.
Therefore, the scheduling proposed leaves approximately half
slots empty. In order to reduce the number of empty slots
the picking could be made between 1 and m = f (n) (with
m ≤ n), but collisions would be more luckily to occur. The
handling of empty slots and collisions is discussed in the
following section.

C. Algorithm description

The enhanced version of the algorithm requires two different
stages:

1) a synchronization round: this stage is needed in order
to let nodes learn about other nodes, that is, to let them
estimate the number of nodes in the group (n̂); the length
of this stage is T ;

2) a notification round: this stage is composed of m =
f(n̂) intervals of length T , during which nodes send the
information about bootstrap nodes in the group;

Synchronization messages are received during synchroniza-
tion rounds, which occur with variable period. A synchroniza-
tion round’s length is T . In this time interval, all synchro-
nization messages are received. Synchronization messages are
ordered by the reported ti time generated by the sender. After

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2009 proceedings.
978-1-4244-4148-8/09/$25.00 ©2009

all synchronization messages are received, the node counts
all the distinct messages that report a ti value that falls in
the [tmin, tmin + τ] range (including its own if the ti is in
the range). Using the number k of such messages and the
value of tmin, the node can estimate the number of nodes n̂
that are present in the network using formula (1). The next
synchronization round will occur after m = f(n̂) slots.

The generation of a schedule can be made in a slightly
different way than by picking a random value between 1 and
m. Indeed, the statistics of the process remain the same if each
node decides at the i-th slot whether to send the message or
not with probability p = 1

m − i . The node(s) that decide to
send the message compute a random time ti in the range [0, T]
to send the message. If a message is received prior to ti, all the
nodes that decided to send the message cancel their scheduled
send. After sending a message, a node waits until the next
synchronization round.

After each node has determined when to send its own mes-
sage, it also generates a random instant in the corresponding
interval at which to send the message. By doing so, nodes
that have picked the same slot do not send their message
simultaneously. If a node that has picked a slot receives a
message during that slot, it cancels its scheduled message. In
order to reduce the number of empty slots, a node that has
picked an interval x that was also picked by another node,
after cancelling the sendind of the message, it can pick another
slot between x and m.

The presence of a synchronization round causes a slight
decrease of the rate of information exchange since some round
is dedicated to collecting information about the number of
nodes that are participating. However, this decrease is not
significant in the case of a high number of participating nodes.

VI. IMPLEMENTATION

In order to achieve the desired behavior, two type of
messages are needed:

• SYNC messages, to be used during the synchronization
round; they must, at least, include information about the
sender and the generated ti value.

• NOTIFY messages, to be used during the notification
round; they must, at least, include information about the
sender, the time of the next synchronization round, and
the bootstrap nodes that the node is willing to advertise.

Messages are processed in the way described by the defined
algorithm. The multicast nature of the proposed protocol forces
us to use UDP as transport protocol. The definition of the pro-
tocol is very simple and lightweight. An early implementation
of the BANANAS protocol has been realized based on the
Java programming language and successively integrated in a
mjSIP-based [6] Kademlia DHT system [4], [5] which we have
developed. The BANANAS protocol is implemented according
to a simple text-based HTTP-like protocol.

The usage of the BANANAS protocol is actually very easy:
a node that is willing to learn about a suitable bootstrap node
to join the desired overlay simply needs to listen on a well-
known UDP port for traffic set to the BANANAS multicast

group address. As result of our implementation, any node
that wants to participate to bootstrap notification procedure,
has just to start the implemented notification protocol that in
turn starts computing the estimation of the number of collab-
orating node and the scheduling of the SYNC and NOTIFY
message according to the simple algorithm specified in the
previous sections. If a node wants to join the P2P network
(a Kademlia-based P2P overlay in our implementation) it has
to start the client side of our protocol implementation that in
turn simply joins the BANANAS multicast group and listen
for NOTIFY messages containing information about possible
bootstrap peers. Such NOTIFY messages, according to the
proposed and implemented algorithm, are received with mean
frequency f = 1

T , letting the joining node to wait a mean
time T before being able to effectively join the P2P overlay.

VII. CONCLUSIONS

In this paper, we have discussed some issues regarding
the bootstrapping problem in peer-to-peer overlay networks.
The bootstrapping process requires that the a new joining
node must first contact an existing node (the bootstrap node)
that is already being enrolled in the overlay. Bootstrapping
problems raise when a bootstrap node needs to be found.
Some mechanism may include the use of nodes that are known
in advance, caching, or server-based discovery. All of these
approaches have pitfalls though.

In order to solve this problem, we have proposed a
multicast-based approach for bootstrap node discovery called
BANANAS. The described mechanism is based on an unso-
licited algorithm, in which bootstrap node advertisements are
not triggered by incoming requests but are automatically sent
by the collaborating nodes to a specific multicast address. This
mechanism has several advantages such as: complete distri-
bution and self-organization, scalability, simplicity, guarantee
of a mean frequency of advertisements and of a fair balance
between all nodes. In the paper we presented the protocol
description and the mathematical justification of each step and
performance evaluation.

Finally, we have described our Java-based implementation
of the algorithm.

REFERENCES

[1] C. Cramer, K. Kutzner, T. Fuhrmann. Bootstrapping locality-aware P2P
networks. In Proceedings of the 12th IEEE International Conference on
Networks (ICON 2004), 2004., Volume 1, Nov. 2004.

[2] M. Conrad and H.J. Hof. A Generic, Self-organizing, and Distributed
Bootstrap Service for Peer-to-Peer Networks. In Lecture Notes in
Computer Science, Self-Organizing Systems, Volume 4725/2007, Pages
59-72, Aug. 2007.

[3] P. Maymounkov and D. Mazires. Kademlia: A Peer-to-Peer Information
System Based on the XOR metric. In 1st International Workshop on
Peer-to-peer Systems, 2002.

[4] S. Cirani and L. Veltri. A Kademlia-based DHT for Resource Lookup
in P2PSIP. Internet-Draft draft-cirani-p2psip-dsip-dhtkademlia-00, IETF,
October 2007.

[5] S. Cirani. Kademlia implementation, 2007.
http://www.mjsip.org/projects/p2psip/p2psip dsip 071025.zip

[6] L. Veltri. mjSIP project, 2007. http://www.mjsip.org

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2009 proceedings.
978-1-4244-4148-8/09/$25.00 ©2009

